On the Finsler-metrizabilities of spray manifolds
نویسندگان
چکیده
In this essentially selfcontained paper first we establish an intrinsic version and present a coordinate-free deduction of the so-called Rapcsák equations, which provide, in the form of 2nd order PDE-s, necessary and sufficient conditions for a Finsler structure to be projectively related to a spray. From another viewpoint, the Rapcsák equations are the conditions for the Finsler-metrizability of a spray in a broad sense. Second , we give a reformulation in terms of 0-homogeneous Hilbert 1-forms of both this and another metrizability problem, called Finsler-metrizability in a natural sense. (The latter is just a Finslerian version of the classical inverse problem of the calculus of variations.) Finally , in our main theorem we provide a reduction of the Rapcsák equations to a 1st order PDE with an algebraic condition. — The preparatory parts of the paper are devoted to a careful elaboration of the necessary technical tools, while in an Appendix the computational background is summarized.
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملHomotheties of Finsler Manifolds *
We give a new and complete proof of the following theorem, discovered by Detlef Laugwitz: (forward) complete and connected finite dimensional Finsler manifolds admitting a proper homothety are Minkowski vector spaces. More precisely, we show that under these hypotheses the Finsler manifold is isometric to the tangent Minkowski vector space of the fixed point of the homothety via the exponential...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Periodica Mathematica Hungarica
دوره 44 شماره
صفحات -
تاریخ انتشار 2002